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The performance bounds of an atmospheric acoustic array operating in a 
turbulent medium with fluctuations described by a von Kärmän spectrum 
are investigated. This treatment considers a single monochromatic source 
and a line-of-sight propagation path. The primary interests are in 
calculating the Cramer-Rao lower bounds (CRLBs) of the azimuthal and 
zenith angles of arrival (AOAs) and in observing how these bounds 
change with the introduction of additional unknowns, such as the 
normalized propagation distance (to wavelength), turbulence parameters, 
and signal-to-noise ratio (SNR). In both two and three dimensions, the 
CRLBs of the AOAs increase significantly for large values of the 
index-of-refraction variance and normalized propagation distance. For 
small values of the index-of-refraction variance and normalized 
propagation distance, the SNR is the limiting factor. For the 
two-dimensional treatment, the estimate of the AOA will decouple from 
the estimates of the other parameters with the appropriate choice of array 
geometry. In three dimensions, again with an appropriate choice of array 
geometry, the estimates of the azimuth and zenith will decouple from the 
estimates of the other parameters, but because of the constraints of the 
turbulence model, they will remain coupled to one another. 
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1.    Introduction 

Acoustical direction-finding and tracking systems will likely play a 
prominent role on the future battlefield, where situational awareness will 
be a key factor affecting the survivability of light- and medium-weight 
forces. The main advantages of acoustical sensors are low cost, small size, 
passive operation, and operational capabilities in non-line-of-sight 
(non-LOS) conditions. However, the performance of acoustical sensors 
does strongly depend on environmental conditions. 

This report discusses how one important environmental effect, the 
scattering of sound, affects the ability of arrays of acoustical sensors to 
determine the bearing angles of targets. Scattering occurs when sound 
interacts with turbulence and other random atmospheric motions, 
creating random distortions in the propagating wavefronts. As the 
wavefronts propagate from the source (target) to the receiving array, they 
can accumulate substantial random variations in their orientation and 
intensity, which are perceived as fluctuations in the apparent bearing 
angles and strength of the source. These acoustic phenomena are 
analogous to scintillation and quivering of optical images, as are often 
observed above a roadway on a sunny afternoon. 

The study of the scattering of waves propagating in a random medium is 
already well established. Only recently, however, have researchers begun 
to directly incorporate the effects of the scattering into performance 
predictions for acoustic direction-finding arrays. Accounting for the 
strong distortion of the wavefront by atmospheric turbulence is crucial to 
obtaining accurate performance characterization. 

The performance of a sensor array may be quantified by calculating the 
mean square error (MSE) between the estimated parameter (such as the 
angle of arrival (AOA) or propagation distance) and its actual value. The 
lower bound of the MSE is the Cramer-Rao lower bound (CRLB), which is 
calculated from the Fisher information (FI). An approach that directly 
incorporated the effects of a random medium into the calculation of the FI 
was first formulated by Song and Ritcey [1] to calculate the performance 
bounds of AOA* estimates for ocean acoustics. Using the general 

*In this report we make a distinction between the AOAs of the sound wave at the array 
and the actual angles of bearing (AOB) of the source. The theoretical treatment in this re- 



framework of Song and Ritcey [1], Wilson [2] calculated the performance 
bounds on AOA estimates for atmospheric acoustic arrays. 

The analysis by Song and Ritcey [1] considered the effects of a random 
medium, characterized by a fluctuation strength, on the performance of a 
linear acoustic array. The total received signal was taken to be that from 
multiple, uncorrelated, plane-wave source signals and from noise. They 
assumed that both the signal component and the noise component had a 
Gaussian distribution with zero mean. The covariance matrix for the 
source was calculated from the second moment of the sound field as 
predicted by the theory of waves propagating in a random medium. For 
no noise, they found a non-negligible change in the CRLB of the AOA for 
increasing fluctuation strength. For a fixed fluctuation strength and 
unknown noise parameter, they found that the CRLB of the AOA 
decreased as the signal-to-noise ratio (SNR) increased. A maximum 
likelihood estimator (MLE) was used and compared to the CRLB: the MLE 
was usually well within 20 percent of the CRLB for five independent data 
sets. The authors also noted that the estimator calculated from a 
beamforming method with the use of a Bartlett processor was identical to 
the MLE calculated for a homogeneous medium. (Propagation through a 
homogeneous medium is the special case of propagation through a 
random medium with zero fluctuation strength.) Comparisons between 
the two estimation methods found that the performance of the 
beamforming method was considerably worse than that of the maximum 
likelihood method with use of the correct fluctuation strength. Their 
findings emphasize the necessity of correctly incorporating the effects of a 
random medium on the wavefront. 

Wilson [2] used the same general approach to study the effects of 
atmospheric turbulence on the performance bounds of linear acoustic 
arrays. This analysis considered a single monochromatic plane-wave 
source propagating in atmospheric turbulence and a LOS propagation 
path. The CRLB of the azimuth was calculated with the assumption that 
the source and noise components of the received signal had a Gaussian 
distribution with zero mean. Gaussian, von Kärmän, and Kolomogorov 
turbulence models were examined. It was found that the array's 

port applies to the AOAs, which represent the orientation of the wavefront normal when 
the sound reaches the array. For propagation in the atmosphere, the average horizontal (az- 
imuthal) AOA is usually very close to the AOB, thereby making acoustic arrays well suited 
to determining the horizontal position of a source. The situation is usually quite different 
for the vertical (zenith) AOA, however. In this case, atmospheric refraction interferes with 
the ability to determine the AOB from the AOA by bending sound waves upward or down- 
ward. Because of refraction, most existing acoustic systems do not attempt to determine the 
zenith of a near-ground source. 



performance degraded with increasing propagation distance, increasing 
frequency, and increasing turbulence strength. 

By assuming that the signal of interest was zero-mean Gaussian, both 
Song and Ritcey [1] and Wilson [2] implicitly treated the case of waves 
strongly scattered by the turbulence. In strong scattering, the turbulence is 
sufficiently strong and/or the wavefronts propagate sufficiently far that 
the phase of the received signal is completely randomized. However, for 
most Army tactical scenarios involving acoustic ground sensors, the 
propagation distances are short enough that the signal is only weakly 
scattered, meaning that it has a deterministic mean component. This report 
generalizes the treatment of the previous authors by providing results 
valid for both strong and weak scattering. 

The second main contribution of this report pertains to the problem of 
multiple unknowns in the FI. In Wilson [2], the FI was calculated 
assuming that the only unknown was the wavefront AOA. The 
source-receiver propagation distance and the turbulence parameters were 
implicitly assumed to be known. In a real scenario, this information may 
not be available. In this report we extend the analysis of Wilson [2]. The 
AOAs (azimuth and zenith), propagation distance, SNR, and turbulence 
parameters are treated as unknowns. The first and second moments of the 
scattered sound field are considered for a turbulent medium with 
fluctuations described by a von Kärmän spectrum. Both a 
two-dimensional (2D) and a three-dimensional (3D) analysis are 
performed for a single monochromatic plane-wave source. A LOS 
propagation path is assumed. The primary interests of this report are to 
calculate the CRLBs of the AOAs and to observe how these bounds 
change with the introduction of additional unknown parameters. 
Therefore, we present only the CRLBs of the AOAs in this report and leave 
the discussion of the CRLBs of the other parameters for a later report 
because of the complexity of the results. 

The signal processing theory is described in section 2 and the von Kärmän 
turbulence model is described in section 3. The full theoretical model is 
derived in section 4. In sections 5 and 6, the CRLBs of the estimates are 
discussed for the cases of no turbulence and turbulence, respectively. 
Results are given in section 7 and conclusions are drawn in section 8. A 
table of symbols and abbreviations is given in appendix A. 



2.    Signal Processing Theory 

2.1    Cramer-Rao Lower Bound 

We wish to estimate a vector parameter © = [61 02 ... ©w]T- The 
minimum MSE of an unbiased estimator 0 about its actual value 0 for a 
given algorithm may be calculated from the Cramer-Rao theorem [3,4], 
which gives 

((e.-e^^fj-^©)]^, (i) 

where J(0) is the N x M FI matrix. (An estimator is said to be unbiased if 
and only if (©) = ©.) The FI is related to the probability likelihood 
p(x; 0) (the probability density function (PDF) of x with 0 as a 
parameter) by 

f - _ / d2l"p(x;®) \ 
lJ(°)U"     \     06,06,     /' (2) 

where the expectation value is taken with respect to p(x; 0) and the 
derivatives are evaluated at the true value of 0. For some function £, the 
estimator 0 = £(x) can attain the CRLB if and only if [3] 

^f^=J(e)K(x)-e]. (3) 

The likelihood function for real parameters of a complex Gaussian PDF 
with covariance matrix Cx(0) and mean /J(0) may be written [3] 

p(x; 0) = ^dot [cx(0)]exp{-[x ~ ^(e)]t c-^ejtx-MCe)]}. (4) 

Its corresponding FI is 

where the functional dependence has been dropped. If there are M 
independent and identically distributed data sets, the likelihood function 
is the product of M identical distribution functions, and hence the FI is M 
times the quanitity given in equation (5). Let there be n elements in the 
sensor array. Then C is an n x n matrix, and p is a column vector of length 
n. Let the subscripts A, v € [1, ..., H\ be the indices on the parameters 
and i, j e [1, ..., n] be the indices for the elements of the sensor array. 



2.2    Signal Model 

Let us define av = y/[3~l]vv ■ (We may sometimes refer to the square root 
of the CRLB as SQRTCRLB.) The minimum value of al is al0 = \/Jvv, i.e., 
the CRLB when 6„ is the only unknown. As the number of unknowns 
increases, a2

v will increase. This is readily seen by examining the FI for two 
unknowns. Suppose 

Jll   Jl2 

J21   J22 

Then, as the FI is symmetric for real parameters, 

(6) 

a? = (J11 - Jfa/^r1 ■ (7) 

Only if J12 = 0 do a\ 2 = a\  2o, and the estimates of 0i and 62 are said to 
be uncoupled. The quantity 

n2 a2 I2 

C = l_% = l-% = -^- (8) 

provides a measure of the strength of the coupling between the estimates 
of 61 and 62: if C = 0/ the estimates are uncoupled; if C < 1, the estimates 
of 61 and 02 are nominally coupled; and if C = 1, there is not enough 
information to obtain an estimate of either 61 or 02 and the CRLB of each 
is infinite. 

Consider an acoustic array with n sensors. We assume that the signal at 
each sensor results from: (1) the wave that has propagated from the source 
of interest, with ip and 6 as the azimuthal and zenith AOAs, and (2) 
random noise. Let p{tp,6, t) and N(t) be the time-varying complex 
envelopes of the two contributions, respectively. These column vectors 
have n elements, one element corresponding to each sensor. The source 
contribution is time dependent because of the random turbulent effects. 
The noise, which is also time dependent, may result from wind noise or 
other competing acoustic sources. The total received signal is thus 

s(tp,e,t) = P(<p,e,t) + N(t). (9) 

Let us assume that the source signal and the noise are uncorrelated. Then 
if the noise signals at the sensors are mutually uncorrelated and have an 
equal variance of cr^ , the total covariance is the sum 

C = Cp + CN = Cp + al In , (10) 



where the subscript p refers to the pressure field of the sound wave of 
interest and N the noise. We assume that the noise has a Gaussian 
distribution with zero mean. Now by definition 

[Cplij = {{Pi- m)(j>j - ßjY > = <PiP*J )-mn),   m = (P* >,   (li) 

where (•) indicates the ensemble average. We take the values of ( p{ p* ) 
and pi from results in the literature for acoustic wave propagation in a 
moving random medium as discussed in section 3.1. 



Ideally, we should calculate the FI from the product of the probability 
likelihoods of the pressure field p and the noise N. However, exact 
solutions for p do not exist (nor for p(p)), but solutions to the first and 
second moments do exist. 

The rigorous solution for the pressure field associated with a sound wave 
propagating through a moving medium can be obtained as a closed set of 
fluid dynamic equations [5]. A pair of approximations are commonly 
applied to this equation set to make the problem tractable. The parabolic 
approximation, valid for small-angle propagation, provides reduction to a 
single equation. The Markov approximation, which assumes that the 
turbulence field has vanishing correlation in the propagation direction, 
subsequently allows the statistical moments of the sound-pressure field to 
be obtained in a closed form. These parabolic and Markov approximations 
are valid in the far field of the source, at observation points near the 
propagation axis (ip < 1 where ip is the angle off the propagation axis), 
and for C > A > £, where A is the wavelength and L and t are the outer 
(integral) and inner length scales of the turbulence, respectively. We use 
the solutions for the first and second moments of the sound pressure as 
given by Ostashev [5]. These results are outlined in the following section. 

3.1    Solution for the First and Second Moments 

Suppose that a sound wave is propagating along the x-axis. The parabolic 
and Markov approximations predict that the moments of the sound 
pressure will attenuate in a simple exponential manner. Defining the 
observation point as r = [x, y, z] and the acoustic wave number as k, 
|k| = k = 27T/A, the equation for the first moment is then 

<p(r)> = e-^pH(r), (12) 

where 7 is the extinction coefficient for the first moment and pH(r) is the 
sound field in the absence of random inhomogeneities. For an incident 
plane wave, pH(r) = p0 e

ikr = po eikx, where p0 is a real-valued constant. 
We also define a saturation parameter Q as 

0 = 1- e-
27*. (13) 



The first moment represents the unscattered (deterministic) part of the 
wave field. When 73; < 1, the saturation parameter is close to 0, scattering 
is small, and the signal at a single sensor exhibits little variability. When 
7x » 1, ft « 1, and the scattered part of the field dominates. 

We wish to know the second moment for two points near the x-axis, 
designated r: = [x, yu z{\ and r2 = [x, y2, z2\. For a fixed sensor 
separation, the second moment also undergoes an exponential 
diminishment: 

<P(ri)p*(r2))=p„(r1)p*(r2) e~a^, (14) 

where p = r! - r2 is the sensor separation vector (transverse to the 
propagation direction) and a is the extinction coefficient for the second 
moment. 

The extinction coefficients depend on the structure of the random 
medium. The result for the second moment is [5-8] 

a(p) = 2nk2 [/(0) - f(p)] (15) 

in which / is the two-dimensional (or projected) correlation function for 
the sound-speed fluctuations. The extinction coefficients for the first and 
second moments are related by 

7 = Q(OO)/2. (16) 

For most random media, including turbulence, a(p) initially increases 
monotonically with increasing p, but when p exceeds C, a(p) 
asymptotically approaches a constant value [6]. Since f(p) -> 0 in the limit 
p —> oo, this constant value is simply 2y, given by 

27 = 27rfc2/(0)=2c2/c2£, (17) 

where <r2 is the index-of-refraction variance. Hence the second moment 
will initially decrease with increasing p, but will eventually "saturate" at a 
fixed minimum value. 

3.2   von Kärmän Turbulence Model 

Typical acoustic sensor arrays used by the Army have a sensor spacing 
larger than the height of the array from ground. As such, performance of 
these arrays is affected by the large eddies of the energy-containing (or 
source) subranges of the turbulence spectrum. This dependence on the 
large eddies distinguishes typical acoustical systems from optical ones, 



whose performance depends primarily upon the smaller scale eddies in 
the inertial and dissipation subranges. In this report, we adopt the isotropic, 
homogeneous von Kärmän turbulence model, since it is relatively simple 
and behaves fairly realistically in the energy-containing subrange. And, 
unlike the more commonly used Gaussian models, the von Kärmän model 
accurately describes the inertial subrange of the turbulence spectrum. 

The von Kärmän form for the two-dimensional correlation function 
actually depends on whether the fluctuations in sound speed are induced 
by a scalar field (temperature or humidity) or a vector field (wind 
velocity). The functions for a scalar field fs and a vector field fv are [6] 

2; , „s % 

where I is a characteristic length scale (equal to T(l/3) T-1 (5/6) 7r-1/2 C), 
T{x) is the gamma function, and Kv{x) is the modified Bessel function of 
order v. 



We now wish to apply the results presented in the previous sections to 
calculate the performance bounds of an acoustic sensor array operating in 
a turbulent medium with fluctuations described by a von Kärmän 
spectrum. To do so, several approximations must be made. First, since a 
closed form expression for p (p) does not exist in the solution to the 
parabolic equation, we make the approximation that p (p) has a Gaussian 
distribution whose covariance matrix is described by the first and second 
moments of p as presented in the section 3.1. Second, the solution of the 
second moment given in section 3 is, strictly speaking, only valid in the far 
field for two observation points that have an equal distance parallel to the 
wavefront normal n and have small components transverse to n. This is 
an unlikely scenerario, however, when one performs source localization 
with an acoustic array. 

Let r be the vector from the center of the array normal to the plane of the 
source (parallel to n), so that r is the propagation distance of the 
wavefront to the center of the array. Let r^ = [x|., y[, zß be the vector from 

the center of the array to the ith sensor. We define R = r + r •, so that ijj' is 
the propagation distance of the wavefront to the ith sensor. Let ptj be the 
separation between the ith and jth sensors, pKi = R^ - R, = r^ - r', and 
let plj be the separation transverse to n. See figure 1. Strictly speaking 
equation (14) is valid only for ptj = p±. However, we approximate 

e -a(Pij)r ~ e-"(ftj)r (20) 

We have two approximations here. First, we assume that the small angle 
approximation holds, so that p± « Pij and hence a(pjj) « a(pi:j). Second, 
we take x in equation (14) to be r = |r|. This is valid provided that for 
every i and j, 

e-<y(ptJ)r _ e-a(Pij)R
lj  _ e-a(Pij)R}\ _ ^ 

Caution must be exercised when applying these approximations. For 
example, suppose that there are four sensors arranged in a rectangular 
configuration. If n is in the plane of the sensor array, then there exist an i 
and j such that ptj ^ pj-. Whereas, if n is nearly perpendicular to the array 
plane, for every i and j, Pij « pf.. See figure 2. Therefore, when 

10 



* X 

Figure 1. Coordinate system depicting vector from array center (origin) to ith sensor rj, 
between ith and jth sensors p^ = r't - r'jt from array center normal to source plane r (so 
that r is propagation distance to array center), and R; = r + v't. Closed circles represent 
sensors and open circle represents point at which r is normal to source plane. 

considering problems strictly in two dimensions, we use a linear array. 
The use of other array geometries requires a different theoretical 
formulation than presented here. Similarly, when considering problems in 
three dimensions, we avoid the use of three-dimensional array 
configurations such cubes. 

4.1    Covariance Matrix 

Based on the assumptions just presented, we take the first and second 
moments to be 

Hi = fie 

( PiP*j ) 

where 

p2e-a(Pij)rei^ 

-•yr 

(22) 

(23) 

fa = k • Rj + x 

<t>ij = <t>i~ <Pj , 

and where r, Rj, p{ -, and pi are as previously defined*. The phase of the 
source x is an unknown parameter and must be included in this treatment 

(24) 

(25) 

(26) 

*Note that we use the convention that m is the ith component of the vector /x (i.e., the 
value of the first moment of the sound field at the ith sensor) and is given by /^ = /xe'0i. In 
this manner, \/M\ = ß and |/x| = ß = -Jnji. 

11 
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Figure 2. Array configurations in two dimensions, (a) Square array with sensors located at 
points 1-4. While p^ m Pli, p{2 56 p12 and p^ 56 p13. (b) Linear array. For every i and j, 
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(a) Two dimensions (b) Three dimensions 

Figure 3. Coordinate system in (a) two dimensions and (b) three dimensions. 

as we are assuming a nonzero mean. We thus write the elements of the 
total covariance matrix (equation (10)) as 

L'ii 

a V 

pi - jl2 + a2
N 

p2e-a(^,)r_-2 e^,i^j. 

Let us define 

r = r [cosipsmö, smipsin9, cos9} 
ri =  [xii Vii zi\   > 

(27) 

(28) 

(29) 

(30) 

so that <p is the azimuth, 9 is the zenith (or declination), and 9' = IT/2 - 6 is 
the elevation. See figure 3. Thus 

k-Ri = fcf • (r + r-i) = Ä;(r + £-cos^sin0 + y-sin<£sin0 + z-cos0) .   (31) 

The FI may now be readily calculated for those parameters we wish to 
consider as unknowns. While the derivatives of the covariance matrix and 
mean are straightforward, the derivatives with respect to the turbulence 
parameter I are tedious. For the interested reader, these are presented in 
appendices B and C. 

4.2    Numerical Issues 

Numerical difficulties may arise in trying to invert J. Consider the 
diagonal terms of the FI matrix. The contributions from the propagation 
distance r and characteristic length scale / may differ by more than 10 
orders of magnitude. This scale discrepancy may also occur for other 
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parameters. We construct a diagonal matrix D whose elements are the 

square root of the diagonal elements of the FI matrix, DXv = J^/2öXu. The 
matrix D JD is now invertible. The CRLB of the unknown parameters may 
then be determined from 

((e„ - e„)2) = [D(DJD)
_1

D 

The efficiency of the estimator is maintained by this process, as it is 
equivalent to a linear transformation of 0. (Linear transformations 
preserve the efficiency of an estimator [3].) 

(32) 
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5.    Discussion: No Turbulence 

We can gain insight into the estimation of the AOAs by first examining the 
limiting case of no turbulence. In the absence of turbulence, we simply 
have „, 

C = 0-£l„    and   fi = p0 ei0i em (33) 

For parameters 9^ and 6„ of which cr£ is independent, the Fisher 
information is determined from the second term in equation (5) and is 
given by 

2M3/*t 9/i      0,,Po f % % (O,A\ 
J» = ^ide^dö: -2M^ h de; de; ■ (34) 

N   1=1 

5.1   Angle-of-Arrival Estimate in Two Dimensions 

In two dimensions, & = kr + kx\ cos ip + ky[ sin <p + x- We assume r is 
known, if not, we can make the substitution x -» x' = kr + x below, and 
the results will still hold. We have 

JW = 2M|§-X;^J   =2Mfc2||^(-x:sm^ + yl'cos^)2       (35) 

Jra = 2M4£?r?n =2Mfc4EHi^^ + yj'cos^) (36) 
CTN   fe   ^   9X *5  £T 

The estimates of <p and x will decouple when J¥,x = 0 => £ a^ = £ y* = 0, 
i.e., if the origin is taken to be at the center of the array. 

Note that none of the elements of the FI is dependent upon the value of %. 
This is expected as it is the arbitrary phase of the source, and its 
dependence should eventually cancel. Close inspection of the second term 
of equation (5) reveals that its dependence in the FI should cancel 
regardless of whether we consider turbulence or not. 
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5.2   Inclusion of \ for Non-Zero Mean Case 

It was noted earlier that, as we are considering the case with a non-zero 
mean, the phase of the source \ in equation (25) must be included. The 
reason is most readily seen by examining the no turbulence case. For 
simplicity let us consider a line array along the y-axis and let us make no 
assumptions about the choice of the coordinate system. First suppose that 
fa = kr + ky[ sin p where ip is unknown and r is known. Then 

(38) 

As CT
2
 = 1/JW, we see that we could choose a coordinate frame infinitely 

far away from the sensor array so that the CRLB of p is zero. 

As this is illogical, let us now suppose that fa = kr + ky[ sin p> + x where 
both p and x are unknown and r is known. The CRLB of p> is now 

=    J, <p<p 2Mk2 cos2 p 
n /   n 

Erf2-; IE* 
i=l \i=l 

-1 

Mk2 cos2 sp 
n E(^-^): 

».j 

-i 

(39) 

Now o-2 is only dependent upon the separation of the sensors, regardless 
of the choice of coordinate system. 

Second, let us consider that fa = kr + ky[ sin <p where r and <p are both 
unknown. Then Jw is given by equation (38) above and 

Jrr = 2M Pl E 
N   t=l 

dfa 
dr 

= 2Mnk .2P0 

Jr<p = 2M 
pl y^ dfa dfa 
al ^ dr dp 

Pl 
= 2Mk2cosp^J2y'i- 

(40) 

(41) 
N   i=l 

Let us choose the origin to be at the center of the array so that the estimates 

of r and p are uncoupled. Then cr2 = (2Mn/c2pg/a2) ~\ i.e., we have the 
implausible result that the propagation distance can be determined to 
within the noise-to-signal ratio (NSR) for a plane wave with a single 
sensor array. Clearly, this bound could never be attained in practice. 

Let us thus suppose that fa = kr + ky[ sin ip + x where r, p, and x are all 
unknown. Again let us chose the origin to be at the array center, so that 
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the estimate of tp is uncoupled from the estimates of r and %• The FI matrix 
is then block diagonal, and the CRLBs of r and % can be determined from 
the submatrix 

" k2 k 
J = 2Mn 

k   1 
(42) 

where here Jn corresponds to Jrx. Because this matrix is singular, we 
have the expected result that the propagation distance and phase cannot 
be determined simultaneously for a plane wave. 

Clearly from both examples presented, the phase angle x must be 
included in fa for the non-zero mean case. 

5.3   Angle-of-Arrival Estimates in Three Dimensions 

Now let us consider the CRLB of the azimuth and zenith in three 
dimensions. (We note that we may interchangeably refer to the CRLB of 
the zenith (0) and elevation (0'), for as they are related by a linear 
transformation, their CRLBs are the same.) Suppose that 
fa = kr + kx\ cos <p sin 0 + ky\ sin if sin 0 + kz[ cos 0 + \ where ip, 0, and x 
are unknown and r is known. We have 

Jw = 2Mk2 sin2 0^-f- JZ {-x • sin cp + y[ cos <p) 
°N   i-l 

2     n 

Jee = 2Mk2 ^| ^2 (x'i cos 'P cos e + y'isin V cos ^ - 4 sin ö)' 
N   i=l 

JYy = 2Mn^r 
a2 

(43) 

(44) 

(45) 

9     n 

r2 

2 
Jve = 2M&2 sin 0^| J^ [ (yf - z f) cos ip sin </? cos 0 + x-y ■ (cos2 <p> - sin2 y>) cos 0 

+ a^Zj' sin <p sin 9 — yfy cos <p sin ( 

2     n 

Jvx = 2MA; sin 0-|- ^ (x ■ sin cp + y[ cos tp) 

2     n 

Po    ~ Jex = 2Mk^-j ^2 (x'icos V cos ö + 2/isin ^ cos Ö - z'isin #) 

(46) 

(47) 

(48) 
N   i=l 

(Again note that the FI is independent of the value of %•) For the estimate 
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of x to decouple from the estimates of p and 6 

n n n 

E^ = E^ = E^ = 0> (49) 
i=l t=l i=l 

and for the estimates of p and 9 to decouple from one another 

" n n n n 

E^'2 = Ex<2 and E^^E^^E^^0-    (5°) 
«=i     i=i i=i      i=i      i=i 

Symmetric array configurations such as a circular array with sensors 
placed at equal angular intervals or a rectangular grid with sensors placed 
at the lattice points meet these requirements provided that the origin is 
taken to be at the center of the array and that the array is located in the 
xy-plane. (We should note that Nielsen [9] has performed a similar 
analysis for a multiple-frequency, far-field, sine wave signal imbedded in 
Gaussian noise. The conditions he found for the estimates of all the angles 
to decouple are the same as for the simple case presented here. Among the 
literature which examine array configurations that result in the 
decoupling of the angle estimates, [10-12] may be of interest to the reader.) 

If conditions (49) and (50) are met, then 

Jw = 2M/c2sin2ö4X>:2 (51) 

Jee = 2Mk2 f| E (^f cos2 9 + zf sin2 o) . (52) 

Note that the CRLB of <p is singular at 9 = 0. Clearly this choice of 
coordinate system is beneficial for estimations of angles that are not near 
the 2-axis. Recall when we introduded the turbulence model that, as we 
are using the small angle approximation, we are interested in angles near 
the propapation axis. We therefore will not be able to uncouple the 
estimates of the zenith and azimuth when considering turbulence, as we 
will have to choose the array plane to be either the xz- or yz-plane. 

In the following sections when we consider the case with turbulence, we 
will take the array to be in the yz-plane and the wavefront to propagate 
near the z-axis. Let us therefore examine the case of no turbulence for this 
configuration. We assume that equation (49) holds, so that the estimates of 
tp and 9 are uncoupled from the estimate of x- Moreover, consider an array 
geometry such that 

X>; = 0    and    ±tf-±f = Y", (53) 
i=l i=l t=l 
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(a square grid is one example). Then 

2 
Jw = 2Mk2Y'2 ^L sin2 0 cos2 p (54) 

J0e = 2Mk2Y,24 (sin2 V cos2 0 + sin2 6) (55) 

2 

J^ = 2Mifc2y'2 ^-f cos <p sin p cos 0 sin 0 . (56) 
N 

Note that the coupling between the estimates of p and 0 is only angularly 
dependent, 

_     Jy8    _        sin2 y? cos2 0 .,__ 

JiptpJee      sin2 0 + sin2 9? cos2 0 

It follows that 
2 

-2 - ^ (58) (T/a  = 
2Mk2Y'2pl sin2 0 

.2 "N 
cr,„ = 

cr2 sin2 0 + sin2 </? cos2 0 
v      2Mife2y'2^        cos V sin4 0 

(59) 

While o-2 is only dependent upon 6, a2 is dependent upon both <p and 0. 
As we are considering propagation near the rr-axis, it is useful to write the 
results in terms of the elevation (0') as opposed to the zenith (0). In this 
manner, we may use the small angle approximation to the power series 
expansion in both p> and 0'. The coupling coefficient is 

C = sin2 y sin2 0' 
cos2 0' + sin2 p sin2 0' 

* ¥>V2 - ^V2 + \p26'A • (61) 

Note that for either ip = 0 or 9' = 0, C = 0 and the estimates of <p and 0' are 
uncoupled as expected. We also see that for small angles the coupling 
between the estimates of p and 9' is weak. In fact, at p = 9' = 15°, 
C = 4.79 x 10~3. The CRLBs of 0' and p> are 

^iMPkr2'' (62) 

^N /1 + 0'
2 + V+17ö,6 + __  \ 

2Mk*Y>2p2 V 3 45 
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20 

and 

a2 

°** = 2MPFV 
(SCC2

 °'+ scc4 e'tan2 ^ (64) 
Po 

r2 
°J<  (1 _LA'2   i   ,„2   ,    2fl/4   ,    2    4 /2o 

+ ii', + ^ + i^+ä^ + -)-       <65) 

Note that o-J(p, 0') = o-£ (0', <p) holds up to 4ih order in the expansion; for 
<f = 6' = 15°, there is a 0.13 percent difference between the exact 
expression and the Ath-order approximation, and a 1.5 percent difference 
for the 2nd-order approximation. 



6.    Discussion: Turbulence 

6.1   Angle-of-Arrival Estimate in Two Dimensions 

Let us consider the CRLB of the AOA p in two dimensions when 
incorporating turbulence. In the presence of turbulence, we find 
(numerically) that choosing the origin to be at the center of the array is no 
longer a sufficient condition for the estimates of the azimuth and phase 
angle to decouple. In addition, we must have a symmetric array 
configuration such as a linear array with mirror symmetry about the 
origin, (note that the stronger condition of uniform spacing is not needed). 
The estimates of p> and % will also be uncoupled for a set of parallel linear 
arrays with uniform sensor spacing, however, the condition for the small 
angle approximation, given in equation (20), is violated with this array 
geometry. The results are independent of the value of x> as we noted 
earlier they should be. 

In Wilson [2], the CRLB of the AOA was analysed in-depth for the 
two-dimensional case assuming a zero mean and a single unknown 
parameter ip. We now wish to examine the difference when the mean is 
incorporated. For simplicity, let us begin by examing a simple 
two-element array and considering the unknowns p and x- We assume 
that all other parameters are known. In appendix D, the FI for a two-point 
sensor array is derived. In deriving equations (D-l)-(D-7), no assumptions 
are made about the form of the derivatives of the covariance matrix or the 
mean vector. In deriving equations (D-8) and (D-9), it is assumed that 
da/dOx = dß/dQx = dß/dGx = 0, where a = Cn = C22 = pi - fi2 + °l in 

equation (27) and ß = \C12\ = |C2i| = j%e~a^r - ft2 in equation (28). As 
noted before, the estimates of the two parameters 0A and 6„ will be 
uncoupled if J\v = 0. 

Suppose that Q\ = p and 6^ = x- By substituting the derivatives 
presented in appendix B into equation (D-9), we find 

_ 2M2ß2 fd<h      d<fo\      2M2ß2k [- (x[ + x'2) sinp + (y[ + y'2) cosp] 
Jipx~   a + ß   {dip       dtp) ~ a + ß 

Therefore, the estimates of <p and % will be uncoupled provided x[ = -x'2 

and y[ = -y'2. Let x[ =x'2 = 0 and y[ = -y'2 = d/2. Then the CRLB of p is 
1/J<ptp, which from equation (D-8), is 
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Figure 4. Percent difference of o> calculated with a nonzero mean and with a zero mean 
versus c2 is in (a) and (b) for different values of l/X. Corresponding saturation parameter is 
in lower figures (c) and (d). Calculations are in 2D for </> = 0, r/A = 250, d/X = 0.5, n = 5, 
and a scalar von Kärmän spectrum. 

a2-/32 

^      M/c2<i2 cos2 ^ [2/32 + p (a + ß)} 

= pt[l- e-2«^] - 2p2/i2 [1 - e-«*»-] + al (2p2 - 2/i2 + a2) 
Mfc2d2 COS2 if {2p^e-2a(d)r + p2 ~2 ^ _ 3e-a(d)r] + £2^2 j 

(67) 

(68) 

For /2 = 0 we recover the result presented in Wilson [2]. Whether or not 
the mean is incorporated, when <p = 0, the source is broadside to the 
sensors, and the performance is maximal When ip = n/2, the source is in 
line with the sensors, and the solution is singular. Even though <p = n/2 is 
not consistent with the small angle approximation, the solution should be 
singular at tp = 7r/2. 

In figures 4 to 6 the percent difference between a^ with and without the 
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Figure 5. Percent difference of av calculated with a nonzero mean and with a zero mean 
versus l/X is in (a) and (b) for different values of ?2. Corresponding saturation parameter is 
in lower figures (c) and (d). Calculations are in 2D for <p = 0, r/A = 250, d/A = 0.5, n = 5, 
and a scalar von Karmän spectrum. 

mean term is presented using a scalar von Karmän spectrum. A linear 
array with 5 sensors spaced in equal intervals of d is considered. The 
upper graphs (a) and (b) in figure 4 depict the percent difference versus 
the index-of-refraction variance c2 for fixed values of r/A, l/X, and d/X 
and two values of the SNR. The lower graphs (c) and (d) give the 
corresponding saturation parameter ti. In figures 5 and 6 the percent 
difference and saturation parameter are plotted versus l/X and r/A, 
respectively. (In presenting the results, it is more natural to use the 
normalized distances, as then the moments have no explicit wavelength 
dependence.) Notice that the percent difference goes to zero as the 
saturation parameter tends to one, as it must. Even for low saturation, the 
percent difference is still small. The results are similar for a vector von 
Karmän spectrum. 

We also find, numerically, that the estimate of <p is uncoupled from the 
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Figure 6. Percent difference of o> calculated with a nonzero mean and with a zero mean 
versus r/X is in (a) and (b) for different values of l/X and q2. Corresponding saturation 
parameter is in lower figures (c) and (d). Calculations are in 2D for y? = 0, d/X = 0.5, 
n = 5, and a scalar von Kärmän spectrum. 

estimates of all the other parameters: r, I, q2, and SNR (or NSR). The 
estimates of <p and r will decouple provided that the origin is taken at the 
center of the array and that the array is symmetric; again a linear array 
with mirror symmetry about the origin is sufficient. There are no 
conditions for the estimate of (p to decouple from the estimates of the 
remaining parameters. If we consider a simple two-element array, we can 
readily see why this occurs. 

Suppose that 0A = (p. Inspection of equation (D-9) reveals that the 
estimate of <p will decouple from the estimate of any parameter of which 
</>i is independent. Therefore, as <fc is independent of Z, c2, and SNR, the 
estimates of these parameters decouple from the estimate of <p. For 0„ = r, 
we have 

J ipr — 
2M2ß2k 

a + ß 
d<pi     d<j>2 

dip      dtp 

2 r, 21.2 2M2tfk 
a + ß (x[ + x'2) sin ip + (y[ + y'2) cos ip] (69) 
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Therefore, the estimates of r and <p will decouple provided x[ = -x'2 and 

y[ = -Vv 

6.2    Angle-of-Arrival Estimates in Three Dimensions 

As we wish to meet the conditions of the small-angle approximation, we 
take the yz-plane to be the array plane and the x-axis to be near the 
propagation axis. As noted earlier, the estimates of 6 and ip will be coupled 
for this choice. As with the two-dimensional case, we find (numerically) 
that for the estimates of 0 and <p to decouple from the estimates of r and x, 
we must take the origin to be at the array center and use a symmetric 
array configuration such as a rectangular grid with mirror symmetry in y 
and z about the origin. The estimates of 6 and ip are found (numerically) to 
decouple from the estimates of all the remaining parameters. The results 
are independent of the value of %. 
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7.   Results 

7.1   Two-Dimensional Analysis 

It was shown in section 6.1 that the percent difference in the CRLB of <p 
when using a non-zero mean versus a zero mean is small. While the CRLB 
of </? was examined in detail in Wilson [2], we present the results here, 
nonetheless, as we are using a modified version of the 2D correlation 
functions fs and fv. The results presented are for a linear array with 5 
sensors spaced in equal intervals of d. The origin is taken to be the array 
center so that the estimate of <p decouples from the estimates of all other 
parameters. As the CRLB for M independent and identically distributed 
datasets is l/s/M times the CRLB for one dataset, all results are presented 
for M = 1. 

The CRLB of <p for <p = 0 is plotted versus ?2 and l/X in figures 7 and 8 for 
SNRs of 10 and 20 dB, respectively, and for fixed values of the other 

Figure 7. 2D analysis of av versus <j2 and l/\ for (p = 0, r/X = 500, d/X = 0.5, n = 5, 
SNR = 10 dB, and a scalar von Kärmän spectrum. 
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Figure 8. 2D analysis of av versus ?2 and l/X for <p = 0, r/A = 500, d/X = 0.5, n = 5, 
SNR = 20 dB, and a scalar von Kärmän spectrum. 

parameters. A scalar von Kärmän spectrum is used. A peak is evident in 
ay at the larger values of ?2 and smaller values of l/X. In this region both 
exp [-a(pij)r] and exp (-2jr) are small. In fact, in the limit that 
exp [-ot{pij)r] and exp {-2-yr) simultaneously approach zero, CT

2
 -> oo as 

C       " ~ " - *     ,   ,  

exp 
a2 In and /z —> 0. For small values of c2 and of l/X, both 
a(pij)r] and exp (-2jr) are approaching the maximum value of 1.0, 

and hence a2 is approaching the limit of (k2d2 cos2 ^pg/cr2)   x for no 
turbulence. The value of av increases with decreasing SNR. 

In figures 9 and 10, a^ for <p = 0 is plotted versus d/X and q2 again for two 
values of the SNR, fixed values of all the other parameters, and a scalar 
von Kärmän spectrum. In figure 11, av for <p = 0 is plotted versus d/X and 
r/A. For all cases, the peak in a^ occurs when both exp [-a(pij)r] and 
exp (—277-) are small. 

In figure 12 we examine cr^ at ip = 0 as a function of the normalized 
propagation distance r/A for a couple of values each of the SNR, c2, and 
l/X. For c;2 = 10~6, the performance degrades with increasing r/A, 
especially for r/A > 104. However, for q2 = 10~4, the performance 
degrades almost exponentially for r/A > 103 when l/X = 100 and for 

27 



Figure 9. 2D analysis of av versus d/X and ?2 for ip = 0, r/A = 500, l/X = 10, n = 5, 
SNR = 10 dB, and a scalar von Kärmän spectrum. 

r/A > 102 when l/X = 10. Intuitively, we expect that for regions of high 
turbulence the best accuracy will be attained for short propagation 
distances. 

The CRLB of ip for other values of <p has the same behavior as for ip = 0, 
with crv increasing slightly. In figure 13, av is plotted versus tp for two 
values of each r/A, l/X, ?2, and SNR. A scalar von Kärmän turbulence 
spectrum is used. We see that for c2 = 10~6 depicted in the upper graph 
(a), av is most sensitive to the SNR; whereas, for c2 = 1CT4 depicted in (b), 
Oy is more sensitive to changes in the normalized length scale. 

The results for a vector von Kärmän spectrum are similar to those of the 
scalar spectrum: the shapes are nearly identical, but the value of a^ is for 
the most part larger. In figures 14 and 15 the ratio CT£/CT* is plotted versus 
l/X and q2 for SNRs of 10 and 20 dB, respectively. The superscripts v and s 
respectively refer to a vector and scalar spectrum. Note that the largest 
difference occurs when cxp [-au(/>„>] is appreciably smaller than 
cxp[-as(pij)r}. 
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101     10 

Figure 10. 2D analysis of av versus d/X and ?2 for ip = 0, r/X = 500, Z/A = 10, n = 5, 
SNR = 20 dB, and a scalar von Kärmän spectrum. 

101     10 

Figure 
SNR = 

11. 2D analysis of o> versus d/X and r/A for <p = 0, c2 = 10 6, Z/A = 10, n = 5, 
: 10 dB, and a scalar von Kärmän spectrum. 
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Figure 12. 2D analysis of av versus r/X for different values of SNR, ?2, and l/\. All curves 
are for at ip = 0, rf/A = 0.5, n = 5, and a scalar von Kärmän spectrum. 

30 



(a) d/X = 0.5,n = 5,q =10" 

to 
T3 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

— SNR = 10 dB, r/X = 500, l/X = 10 0 SNR = 20 dB, r/X = 500, /A. = 10 
■■• SNR =10 dB,/-A. = 250,/A, = 10 ° SNR = 20 dB, rA = 250,/A = 10 
- - SNR = 10 dB, r/X = 500, l/X =100 O SNR = 20 dB, r/X = 500, l/X = 100 
■-   SNR = 10 dB, rA = 250, l/X =100 * SNR = 20 dB, r/X = 250, l/X = 100 

DODDDnannnnDDaoDnnaDtinnnnnnDDDQnDnanaonnDannuonDni 
»ooooooooooooooooooooooooooooooooooooooooooooooooo« 

r*************************************************' 

10       11       12       13       14       15 

<p (deg) 

(b) rfA = 0.5, n = 5, <; = 10"4 

7.5 

7 

6.5 

6 

5.5 

e8"   4-5 

4 

3.5 

^♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦oo^o^o^^^o^^ooo^o^^0^^0^^^^^^^^^ 

3 

2.5 

lööDcnnonan 
nanDDnnDDnnnnnDnnDnnnnnDDnnnDDDnDnQanDD' 

»oooooooooooooooooooooooo ooooooooooooooooooooooooo« 

************************************************** 
 I I I I I I 1 1 1 1 1 1 1 1  

0        1        2        3        4        5        6        7        8        9        10       11       12       13       14       15 

<P (deg) 

Figure 13. 2D analysis of crv versus <p. A scalar von Kärmän spectrum is used. 
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Figure 14. 2D analysis of ratio <r£/cr* versus l/X and ?2 for <p - 0, r/A = 500, d/A = 0.5, 
n = 5,andSNR = 10 dB. 

10~8    103 

Figure 15. 2D analysis of ratio cr^/cr^ versus l/X and ?2 for <p = 0, r/A = 500, d/A = 0 5 
n = 5, and SNR = 20 dB. 
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7.2    Three-Dimensional Analysis 

We choose the x-axis to be the near-propagation axis and take the sensor 
array to be in the yz-plane. As noted earlier, this will result in the coupling 
of the estimates of <p and 9. The array geometry considered for this 
analysis is a 4 x 4 square grid with spacing of d. The origin is taken to be 
the array center. In this way, the estimates of <p and 9 will decouple from 
the estimates of r and x, as well as the estimates of the other parameters. 
Again all results presented are f or M = 1. 

The values of a^, ae, av , and CFQ0 are the same at cp = 0 and 6 = TT/2 due to 
symmetry. In figures 16 and 17, o^ at ip = 0 and 9 = TT/2 is plotted versus 
l/X and c2 for SNRs of 10 and 20 dB, respectively, and fixed values of the 
other parameters. A scalar von Kärmän turbulence spectrum is used. We 
see the same behavior as for the two-dimensional case. The peak in er^ 
corresponds to the region where both exp [—a(pij)r] and exp (—2jr) are 
small. The shape is similar to that in 2D, but the overall values are smaller, 
especially for large values of ?2 and small values of l/\. This is expected as 
a 4 x 4 array in 3D should provide more "information" than a 5-point 

Figure 16. 3D analysis of av versus l/\ and ?2 for <p = 0, 0 = TT/2, r/\ = 500, d/X = 0.5, 
ny = nz = 4, SNR = 10 dB, and a scalar von Kärmän spectrum. At <p = 0 and 9 = TT/2, 

= CTe = <TV0 = (Tfio- 
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■3,   4 

Figure 17. 3D analysis of o> versus l/X and ?2 for <p = 0, 6 = n/2, r/X = 500, d/X 
ny = n- = 4, SNR = 20 dB, and a scalar von Kärmän spectrum. 

0.5, 

linear array in 2D. The behavior for other values of <p and 9 is similar. 

In figure 18 we examine av at <p = 0 and 9 = TT/2 as a function of the 
normalized propagation distance r/X for a couple of values each of the 
SNR, q2, and //A. As with the 2D case, we see that the performance 
degrades most rapidly with increasing r/X for q2 = 10~4; for the 3D case, 
however, the near exponential rise in a^ now occurs at slightly larger 
values of r/X. 

As in the 2D case, the behavior of av and a$ for a vector von Kärmän 
spectrum is similar to that of a scalar von Kärmän spectrum: the CRLBs for 
the vector spectrum increase most significantly over those for the scalar 
spectrum in regions where exp [—av(pij)r] is appreciably smaller than 
exp [—as(pij)r]. The ratio cr^/a^ at ip = 0 and 9 = -K/2 is plotted versus l/X 
and ?2 for SNRs of 10 and 20 dB in figures 19 and 20, respectively. 

Figure 21 examines er^ and a$> as functions of <p and 9', as well as the 
coupling between the estimates of </? and 9', for ?2 = 10~6 and l/X = 10. A 
scalar von Kärmän spectrum is used. From figure 21(a), a contour graph of 
Oy for 9' versus (p, we see that for small angles a^ip, 9') = aip(9', p). This 
symmetry was also seen for small angles in the no-turbulence case. 
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Figure 18. 3D analysis of av versus r/X for ip = 0, 9 = rr/2, d/X = 0.5, ny = nz = 4, and a 
scalar von Kärmän spectrum. 

Figure 21(b) gives av as a function of <p for fixed values of 9'. Now, o-e/, on 
the other hand, is dependent upon 9' but is independent of (p, as indicated 
in figure 21(c). Again this is the same behavior as in the no-turbulence 
case. As the estimate of neither ip nor 9' is coupled to the estimate of any 
other parameter, we may use equation (8) to gauge how strong the 
coupling between the estimates of ip and 9' is. We first note that alf>o and 
<70/o are both dependent upon ip and 0'. In figure 21(d), C is plotted versus 
ip for fixed values of 9'. We see that the coupling is in fact weak. In 
figure 22(a-d) the same is presented but for q2 = 10~4 and l/X = 10. 
Figures 21(d) and 22(d) appear identical. In fact we find, to within the 
numerical accuracy of this calculation, that ( is the same as for the no 
turbulence case (see equations (57) and (60)), regardless of the the value of 
r/X, d/X, SNR, l/X, or c2, and regardless of the von Kärmän spectrum 
used. 
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Figure 19. 3D analysis of ratio av
v/os

v versus l/X and <r2 for <p = 0, 9 
d/X = 0.5, ny = nz = 4, and SNR = 10 dB. 

= TT/2, r/X = 500, 

IQ-* 10 

Figure 20. 3D analysis of ratio <TJ/CT* versus l/X and <r2 for v? = 0, 6 = TT/2, r/A = 500, 
d/X = 0.5, ny=nz= 4, and SNR = 20 dB. 
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Figure 21. (a) Contour of o> for 0' versus y?. (b) Plot of av versus ^ for fixed 0'. (c) Plot of 
<T6> versus 9'. (d) Plot of C, versus tp for fixed 0'. All curves are for r/X = 500, l/X = 10, 
?

2 = 10"6, d/X = 0.5, ns = nz — 4, SNR = 10 dB, and a scalar von Kärmän spectrum. 
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Figure 22. (a) Contour of av for 0' versus <p. (b) Plot of ov versus y> for fixed 0'. (c) Plot of 
ov versus 0'. (d) Plot of £ versus v? for fixed 0'. All curves are for r/X = 500, //A = 10, 
<r2 = lO""1, d/A = 0.5, ny = nz = 4, SNR = 10 dB, and a scalar von Kärmän spectrum. 
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7.3    Cramer-Rao Lower Bound of Other Parameters 

Though we have not examined the CRLB of the other parameters in this 
report, a brief comment is in order. For large values of the 
index-of-refraction variance and small values of the normalized length 
scale, we find that for 6 G [l/X, ?2, r/X], ae/@ may be less than one for a 
sufficient number M of independent and identically distributed datasets. 
However, for other values of <r2 and l/X, ae/@ > 1. Therefore, the regions 
in which a^ is strongly dependent upon 0 correspond to the regions in 
which ere/© is smallest; similarly the regions in which a^ is nearly 
independent of 6, correspond to the regions in which 0 cannot be 
estimated from the model presented here. Due to the complexity of the 
analysis of <TQ, it is left for another date. 
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We have examined the performance bounds of acoustic arrays operating 
in atmospheric turbulence with fluctuations described by a von Kärmän 
spectrum. The analysis featured three main improvements upon earlier 
work: 

• The performance bounds were generalized to weak as well as strong 
scattering. 

• Multiple unknowns, such as the propagation distance of the 
wavefront and the turbulence parameters, were incorporated. 

• AOA estimates for three-dimensional problems (i.e., two bearing 
angles) were considered. 

Our primary interest in this report was to analyze the CRLBs of the AOAs. 
For an incident plane wave, we have found that an appropriate choice of 
coordinate system and array geometry leads to the decoupling of the 
estimates of the AOAs from the estimates of the other parameters: the 
normalized propagation distance (r/A), SNR, turbulence parameters (l/X 
and <?), and phase angle (x). In order to remain consistent with the 
small-angle approximation, we had to choose a coordinate system that 
resulted in the coupling of the estimates of the azimuth and zenith; the 
coupling, however, was small. We have found that the CRLBs of the AOAs 
increase significantly for large values of the normalized propagation 
distance and index-of-refraction variance. However, for small values of 
the index-of-refraction variance and normalized propagation distance, the 
SNR is the limiting factor. 

The results in this report demonstrate that scattering by atmospheric 
turbulence significantly affects the performance of acoustic sensor arrays. 
Future efforts should attempt to incorporate the additional phenomena of 
ground reflections and refraction by atmospheric wind and temperature 
gradients. These phenomena will likely have considerable impact on the 
ability to estimate the elevation angle. However, numerical techniques 
will probably be required to model these complications. 
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A.l    Symbols 

& 

G 

<•) 

t 

Complex 

Complex conjugate 

Defined as 

Element of 

Ensemble average or expectation value 

Hermitian adjoint (complex conjugate transpose) 

Identity matrix, n x n 

A.2   Abbreviations 

9        Imaginary 

~        On the order of 

K        Real 

T        Transpose & 

AOA Angle of arrival 

AOB Angle of bearing 

CRLB Cramer-Rao lower bound 

FI Fisher information 

LOS Line of sight 

MLE Maximum likelihood estimator 

MSE Mean-square error 

PDF Probability density function 

SQRTCRLB Square root of the Cramer-Rao lower bound 

2D Two dimensions or two-dimensional 

3D Three dimensions or three-dimensional 

41 



Appendix B.   Derivatives of Covariance Matrix and Mean 

In order to calculate the FI matrix (equation (5)), we need the derivatives 
of the covariance matrix C and the mean vector n with respect to the 

unknown parameters 0 = [p 9 r cr£ / <? X]T. The dependence of C and /x 
on these parameters is given in section 4.1. The derivatives of the 
components of the covariance matrix (Cu and Qj, i ^ j) and mean vector 
(m) with respect to these parameters are given in the following 
subsections. 

B.l    Unknown Parameter ip 

The derivatives with respect to the azimuth p are 

^i = o (B-l) 
dp 

d^=i^Cij,i^j (B-2) 
dip op 

(B-3) djM _ . dfa 
dip        dip 

where 

-^— = k {—x\ sin ip sin 6 + y\ cos ip sin 9) (B-4) 
dip 

d<t>ij = <NH _ d&i ß_5j 
dip       dp      dp 

B.2   Unknown Parameter 9 

The derivatives with respect to the zenith (declination) 9 are 

dCu 
d9 

0 (B-6) 

^Ü = i^C«,i^j (B-7) 
d9 d9     °'    ^J 

-^ = 1^^' (B"8) 
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where 

-7-r- = -k(x'i cos tp cos 6 + y[ sin tp cos 6 - z\ sin 9) 

de     oe ~ ~dd~ 

B.3   Unknown Parameter r 

The derivatives with respect to the propagation distance r are 

(B-9) 

(B-10) 

where 

dCu 
dr 

dCjj 

dr 

djP^ 
dr 

-Poa(Pij)e 
-a(Ptj)r _ ^£_ 

dr 

21 
,«««   ,   : d&J + 1- 

dr Cij , i T j 

dfM = dß J4>t ^ . d(jx 
dr       dr e""x + 1~dVßi' 

(B-ll) 

(B-12) 

(B-13) 

dr 
= — a(oc) fi2 

dfi 
dr = -iß 

dfr 
dr 

= k 

d<t>ij 
= 0. 

dr 

(B-14) 

(B-15) 

(B-16) 

(B-17) 

B.4   Unknown Parameter for Noise 

We can treat either the noise variance (GT£ ) or the signal-to-noise ratio 
(SNR) as the unknown. First let us suppose that a* is the unknown. Then 

dCü 

dCjj 

djij 

to\ 

= 0,i^j 

(B-18) 

(B-19) 

(B-20) 
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Alternatively, we can take the SNR as the unknown. Recall that 

SNR = PO/°"N- 
Let 0 be the Parameter symbol for the SNR. Then 

dCa      dal 

where 

ae de 

oe = 0,i?j 

dm 
de 

= o, 

de 02 e 

(B-21) 

(B-22) 

(B-23) 

(B-24) 

B.5    Unknown Turbulence Parameters 

Consider the derivatives with respect to the turbulence parameters I (the 
length scale) and c2 (the index-of-refraction variance). Let 0 G [l, c2] be 
the unknown parameter. Then 

dCa _ 

ae 
ddj = 

de 
dm 
de 

dip 
de 

2   dajpij)   -a(fti)r     W 
~Por 

de de 
dfi 

= -^z e de 

(B-25) 

(B-26) 

(B-27) 

where 

dp 
de 
dfi 
de 

da(oo) _o 
de 

r da(oo) 
"2   de 

li. 

(B-28) 

(B-29) 

RecaU that a(p) = 2nk2 [/(0) - /(/>)], where / is the 2D correlation 
function for either a scalar or vector von Kärmän spectrum as given in 
equations (18) and (19), respectively. The derivatives of fs and /„ with 
respect to I and q2 are given in the following appendix. 
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Appendix C.   Derivatives of /(/>) with respect to ?2 and I 

The scalar and vector 2D correlation functions, fs and /„, are given, 
respectively, in equations (18) and (19). In this section we calculate the 
derivatives of fs and /„ with respect to the index-of-refraction variance ?2 

and with respect to the turbulence length scale I. The limits of f(p), for 
p ->■ 0 and p —> oo, are also calculated as well as their derivatives. 

C.1    Derivative of f(p) with respect to <r2 

The derivative of /, where / is either fs or fv, with respect to the 
index-of-refraction variance q2 is 

9/ 
dc2 

/ 
,-2 ' 

(C-30) 

C.2    Derivative of /(p) with respect to I, p ^ 0 

The derivative of the scalar 2D correlation function /s(p), for pj^O, with 
respect to the turbulence length scale I is given by 

dfe_ 
dl dl ^T(lß)^)56ll/6K5/6(l)_ 

,5/6 \r^K^-Pr^K'^)_ 

Z L       '      \ t / 

%2 (P\- 
V^r(l/3) V2/      L~ ... -   j 

- v4^ (§r ^-^ (f)+1 <-ii/e K= (?)+*- (?)i} 
= 0F?(l/3) (27)5 6 {a*5/6 (l) + 27 [Kl" 

= v^FrV/3) (27)5/6 K6 (?) + ?Xl/6 (?). 
(C-31) 

In going from the second line to the third ] 
Le fifth, the recursion relationships 

K„-i(x) + Kv+i(x) 

Kv-i(x) - Kv+1(x) ■■ 

joing rrom tne secona line iu me uuru line and from the forth line to 
the fifth, the recursion relationships 

= -2K'v{x) 
2v 
x 

■Kv{x) 

(C-32) 

(C-33) 
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and the relationship 

Kv{x) = K-V(x) (C-34) 

have been used, (see, for example, Arfken [13] or Gradshteyn and Ryzhik 
[14]). The intermediate algebraic steps are not shown. 

The derivative of the vector 2D correlation function fv(p), for p ^ 0, with 
respect to the turbulence length scale I may be written in the form 

2, 
1/3) V27 

p\ii/6 d dfv _ dfs 

di ~~ di    v^r(i/3) \2J     di 

dfs 2?2        /p\H/6 r   5 
['""My) 

Öl yßT[lß) 

dl 

(D  HrU/6^(7)-"r'7/6^(T) 

2? 
¥r(i/3) 

(S2Ke(f)+^s(f) 

= Ä>(£) {H(?)1M?)+IM?)}-        <«5> 
Again the recursion relationships have been used in going from the 
second line to the third and from the forth line to the fifth. The 
intermediate algebraic steps are not shown. 

C.3    Evaluation of /(0) and Derivative of /(0) with respect to I 

We wish to evaluate fs(p) and fv(p) in the limit that p -» 0. Consider 

'•<o>=ü3c(?rMi) 
/.«>) = Jmc(f) 

5/6 

5/6 

Mfo-iM?) 
where 

C = 
2c?l 

25/6v^r(i/3)' 

For x G 3? and i/ > 0, (see, e.g., Arfken [13]), 

lim KJx) = —^-^  

(C-36) 

(C-37) 

(C-38) 

(C-39) 
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Therefore, for x e 3? and v > 0, 

lim xxKJx) = < 
x->0 

oo if A < v, 

2I/-1I»    if A = i/, 

^0 if A > i/. 

It follows that 

'•<°>=c^s)=S§=*nr'-(0)- 
where /? is the beta function, ß(x, y) = T(x)T(y)/F(x + y). Thus 

3/(0) /(0) 

/?(U) 

(C-40) 

(C-41) 

(C-42) 

C.4    Evaluation of /(oo) 

We wish to evaluate fs (p) and /„ (p) in the limit p -> oo. We note that in the 
asymptotic expansion of Kv{x), x € 9J, the leading term is proportional to 
e~x /y/x. As such the exponential term will dominate in fs and /„. Hence 

/s(oo) = fv(°°) = 0. 

We refer the reader to [13] and [14] for comments regarding the 
asymptotic expansion of Kv{x). 

(C-43) 
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Appendix D.    Simple Two-Element Array Model 

Consider the simple case of a two-element array, and let Q\ and 6, be 
unknown parameters. Let us write the covariance matrix as 

a   b 

b* a 

where b = ße^12 and a, ß Edl. Let us write the mean vector as 

Ml 
= fi 

ei0i 

_M2. . e102 J 

fric-^c-'^ 

It follows that 

2 

dGx        dQj      (detC) 
K 

M 

da        „  db \f    da db 
ade;-bde;){adG;- bde: 

db       ,  da \ (   db*      _ da 
+ ( a— b-^r- ) [a— &*■ 

(a2-/?2) 

96 A    aeAyv 96,      9e„;j 
/ 9     ^9\ /   9a   9a        9/?   9/3 
(a2 + /32)[^^7^ + 

96^96,     96*96, 

( da   dß        da   dß \        2 , 2     ^ 
2aß{d^M; + de-dG;)+ß <a _/3) 

(D-l) 

(D-2) 

(D-3) 

9012 d<f>\2 
96 A dQv_ 

(D-4) 

and 

» I^V1 ö" 
96; 96, 

= 5R 
detC 

9//*  /   9/ii        9/i2 

9eT(o^"b 
ÖM2   (    9fl2 + ^^ I a- 

96,       dQj     d&x V 96,        96, 
L*9/il 

i_L, _m^A__?A_ , -2[  (d<l>i d^ 1 g02 dfo 
a^^l   (a    W96A96,     ^   L

G
V90A96,     96A 96, 

901 9^2      901 902 
_/M 96A96,     96,96A, )]}■ 

(D-5) 

(D-6) 

Recall for a Gaussian process, the FI is given by equation (5). Thus, for 
£ = A or v, 

51 



'« = 
2M 

(«2-/32)2 

2M + 
a2-/?2 

(a2 + /?2) 

2(a-/5) 

9a 

09, 

dfl 

+ dß_ 

-^ik+^MW 
+ aß 

de, + 

dOfdQ 

dGc 
_r)R~2d(t)l    d(f)2 (D-7) 

For the special case when da/dQx = dß/dQx = dß/dQx = 0, but there are 
no restrictions on the derivatives with respect to 0„, 

J\\ = 
2Mß2   (d(bl2 

a2 - ß2 V dQx 

,-,2 
+ 2M/2 

a?-ß2 
d<f>i\       (d(f>2 

2Mß2 d4>n 9012       2M/22 

Al/ "  a2 _ ß2 dQx dQu   + a2 _ ß2 

dexj   • \aex 

d(f>i d<t>i      d(j)2 d<j>2 

dQx d®„     dQx dQu 

2/3 dWxdo: (D-8) 

p' aeA dQv   dQu dQx 
(D-9) 

and Juu is given by equation (D-7) with £, = v. 
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